MODULMATEMATIKA INTEGRAL MATERI 12 IPS ( MAT 12.1.1 ) Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.198101.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI 6 Jalan Mayjen Sungkono No. 58 Telp. (0341) 752036 Malang Modul 12.1 - Integral by. Drs. Pundjul Prijono 1 f BAB I. PENDAHULUAN A. Deskripsi Dalam Downloadcontoh soal siap ujian akhir semester uas ganjil mapel matematika jurusan ipa dan ips kelas duabelas 12 xii sma semester 1 tahun ajaran terbaru file pdf kurikulum ktsp 2006. Contoh soal matematika integral kelas xii ips. Pdf Modul Matematika Integral Materi 12 Ips Disusun Oleh Pemerintah Kota Malang Dinas Pendidikan Novan Pgt Academia Edu IntegralTak Tentu - Matematika Wajib Kelas XI. Pada kurikulum 2013 revisi, materi integral dipelajari di kelas XI pada matematika wajib. Dalam kalkulus, ada dua konsep dasar integral yang dipelajari, yaitu integral tak tentu (indefinite integral) dan integral tentu (definite integral). Konsep integral tak tentu merupakan kebalikan atau invers Vay Nhanh Fast Money. Bab 1 Integral A. Pengertian Integral B. Integral Tak Tentu C. Integral Tertentu D. Menentukan Luas Daerah Ringkasan Materi Integral Bab 2 Program Linear A. Sistem Pertidaksamaan Linear Dua Variabel B. Model Matematika C. Nilai Optimum Suatu Fungsi Objektif Ringkasan Materi Program Linear Bab 3 Matriks A. Pengertian Matriks B. Operasi Hitung pada Matriks C. Determinan dan Invers Matriks D. Penerapan Matriks dalam Sistem Persamaan Linear Ringkasan Materi Matriks Bab 4 Barisan, Deret, dan Notasi Sigma A. Barisan dan Deret Aritmetika B. Barisan dan Deret Geometri C. Notasi Sigma dan Induksi Matematika D. Aplikasi Barisan dan Deret Ringkasan Materi Notasi Sigma Barisan Deret INTEGRAL A. PENGERTIAN INTEGRAL Integral adalah kebalikan dari proses diferensiasi. Integral ditemukan menyusul ditemukannya masalah dalam diferensiasi di mana matematikawan harus berpikir bagaimana menyelesaikan masalah yang berkebalikan dengan solusi diferensiasi. Lambang integral adalah ʃ Integral terbagi dua yaitu integral tak tentu dan integral tertentu. Bedanya adalah integral tertentu memiliki batas atas dan batas bawah. Integral tak tentu biasanya dipakai untuk mencari volume benda putar dan luas. 1. Integral Tak Tentu Integral tak tentu adalah sebuah bilangan yang dimana unuk mencari besaran dan volume benda. Misalkan diberikan fungsi-fungsi berikut. y = x2 + 2x + 5 y = x2 + 2x – 2 Kedua fungsi itu memiliki turunan yang sama, yaitu = 2x+2 Sekarang, tinjau balik. Misalkan diberikan = 2x + 2. Jika dicari integralnya, akan diperoleh fungsi-fungsi y = x2 + 2x + 5, y = x2 + 2x – 2, bahkan y = x2 + 2x + 10, y = x2 + 2x – log 3, dan sebagainya. Dengan demikian, fungsi yang memiliki turunan = = 2x + 2, bukan saja dua fungsi di atas, tetapi banyak sekali. Walaupun demikian, fungsi-fungsi itu hanya berbeda dalam hal bilangan tetap saja seperti 5, –2, 10, log 3, dan seterusnya. Bilangan-bilangan ini dapat disimbolkan denganC. Karena nilai C itulah hasil integral ini disebut integral tak tentu. 1. Notasi Integral Tak Tentu Perhatikan kembali definisi integral tak tentu di atas. Secara umum, jikaFx menyatakan fungsi dalam variabel x, dengan fx turunan dari Fx dan ckonstanta bilangan real maka integral tak tentu dari fx dapat dituliskan dalam bentuk dx=Fx+c dibaca ”integral fungsi fx ke x sama dengan Fx + c”. Keterangan dx = notasi integral tak tentu Fx + c = fungsi antiturunan fx = fungsi yang diintegralkan integran c = konstanta dx = diferensial turunan dari x Misalkan terdapat sebuah fungsi, maka integral tak tentu ataupun antiturunan dari fungsi tersebut adalah Rumus Integral tak tentu untuk fungsi aljabar dasar kenapa? Karena jika n = -1 maka penyebut di ruas kanan menjadi nolUntuk n = -1 maka akan menjadi Integral tak tentu untuk fungsi trigonometri dasar Sifat-sifat integral tak tentu 2. Integral tentu Integral tertentu adalah sebuah bilangan yang besarnya ditentukan dengan mengambil limit penjumlahan Riemann, yang diasosiasikan dengan partisi interval tertutup yang norma partisinya mendekati nol, teorema dasar kalkulus menyatakan bahwa integral tertentu sebuah fungsi kontinu dapat dihitung dengan mudah apabila kita dapat mencari antiturunan/antiderivatif fungsi tersebut. Apabila Keseluruhan himpunan antiturunan/antiderivatif sebuah fungsi ƒ adalahintegral tak tentu ataupun primitif dari ƒ terhadap x dan dituliskan secara matematis sebagai Ekspresi Fx + C adalah antiderivatif umum ƒ dan C adalah konstanta sembarang. PERHATIKAN BAHWA INTEGRAL TERTENTU BERBEDA DENGAN INTEGRAL TAK TENTU. INTEGRAL TERTENTU DALAM BENTUK . INTEGRAL Hitung integral merupakan metode matematika dengan latar belakang sejarah penemuan dan pengembangan yang agak unik. Metode ini banyak di minati oleh para ilmuwan lain di luar bidang matematika. Beberapa ilmuwan yang telah memberikan sumbangan terhadap penemuan dan pengembangan metode matematika hitung integral ini, di antaranya adalah 1. Archimedes 287-212 SM, seorang fisikawan sekaligus matematikawan dari Syracuse, Yunani. Pada abad kedua sebelum masehi, Archimedes talah menemukan ide penjumlahan untuk menentukan luas sebuah daerah tertutup dan volume dari benda putar. Diantaranya adalah rumus lingkaran, luas segmen parabola, volume bola, volume kerucut, serta volume benda putar yang lain. Ide penjumlahan ini merupakan salah satu konsep dasar dari Kalkulus Integral. 2. Isaac Newton 1642-1727 M, seorang matematikawan sekaligus fisikawan dari Inggris. Isaac Newton dan Gottfried wilhelm Leibniz dalam kurun waktu yang hampir bersamaan, meskipun bekerja sendiri-sendiri, telah menemukan hubungan antara Kalkulus Differansial dan Kalkulus Integral. Walaupun konsep luas daerah yang dibatasi oleh kurva tertutup integral tertentu telah lebih dahulu diketahui, tetapi I Newton dan Leibniz merupakan dua tokoh terkemuka dalam sejarah Kalkulus. Sebab, mereka mampu mengungkapkan hubungan yang erat antara antiderivatif dengan intagral tertentu. Hubungan ini dikenal dengan Teorema Dasar Kalkulus. 3. Gottfried wilhelm Leibniz 1646-1716 M, seorang ilmuwan jenius dari Leipzig, Jerman. Leibniz seorang ilmuwan serba-bisa. Ia mendalami bidang hukum, agama, filsafat, sejarah, politik, geologi, dan matematika. Selain Teorema Dasar Kalkulus yang dikembangkan bersama Newton,Leibniz juga terkenal dengan pemakaian lambang matematika. Lambangdx/dy bagi turunan dan lambang ∫ bagi integral merupakan lambang-lambang yang diusulkan oleh Leibniz dalam Hitung Differensial dan Hitung Integral. 4. George Friedrich Bernhard Riemann 1826-1866 M, seorang matematikawan dari Gottingen, Jerman. Meskipun Teorema Dasar Kalkulus telah dikemukakan oleh Newton, namun Riemann memberi definisi mutakhir tentang integral tentu. Atas sumbangannya inilah integral tentu sering disebut sebagai Integral Riemann. Asal Usul Notasi Integral Konon dalam sejarah matematika, pelajaran integral lebih dikenal dengan anti-differensial atau kalo disekolah kita lebih mengenal kata “turunan” dibanding kata “differensial”. jadi Integral itu adalah kebalikan dari turunan. Baik integral ataupun differensial, keduanya merupakan bagian dari ilmu Kalkulus dalam Matematika. Menurut sejarah, tokoh yang mengembangkan dan memperkenalkan konsep differensial dan anti-differensial integral dalam ilmu matematika adalahGottfried Wilhelm Leibniz, atau lebih dikenal dengan Leibniz saja. Nah, lambang integral seperti cacing berdiri dahulunya dikenal dengan “Notasi Leibniz”, karena Leibniz lah yang memperkenalkan konsep integral dalam Matematika, lambang integral seperti ini ∫, diambil dari huruf pertama nama si Leibniz, yaitu huruf “L”, namun pada zaman dahulu orang menuliskan huruf “L” dalam bentuk yang indah, seperti berikut ∫. INTEGRAL Ekonomi Mencari fungsi asal dari fungsi marginalnya fungsi turunannya. Mencari fungsi biaya total. Mencari fungsi penerimaan total dari fungsi penerimaan marginal. Mencari fungsi konsumsi dari fungsi konsumsi marginal. Fungsi tabungan dari fungsi tabungan marginal. Fungsi kapital dari fungsi investasi. Teknologi Penggunaan laju tetesan minyak dari tangki untuk menentukan jumlah kebocoran selama selang waktu tertentu Penggunaan kecepatan pesawat ulang alik Endeavour untuk menentukan ketinggian maksimum yang dicapai pada waktu tertentu. Memecahkan persoaalan yang berkaitan dengan volume, paanjang kurva, perkiraan populasi, keluaran kardiak, gaya pada bendungan, usaha, surplus konsumen. Fisika Analisis rangkaian listrik arus AC. Analisis medan magnet pada kumparan. Analisis gaya-gaya pada struktur pelengkung. Matematika Menentukan luas suatu bidang, Menentukan volume benda putar, Menentukan Panjang busur SOAL DAN PEMBAHASAN 1. 2 Jawab 2 = 2 – 8x + 16 = 2+1 - 1+1 + 16 x + C = 3 – 4x2 + 16x + C 2. 3 + Jawab 3 + = 3 + x = 3+1 + x = x4+ x + C 3. Jawab Misal y = x2 + 8makaSehinggaMaka 4. Jawab Misal U = maka = du= -sin x Maka = U2 = = U -1 + C = + C 5. Tentukan nilai dari integral berikutPenyelesaianmbvc = = 332-322 = 27-12=15 Contoh Soal Soal Matematika Kelas 12 Ips Integral Dan Pembahasannya - Here's Contoh Soal Soal Matematika Kelas 12 Ips Integral Dan Pembahasannya collected from all over the world, in one place. The data about Contoh Soal Soal Matematika Kelas 12 Ips Integral Dan Pembahasannya turns out to be....contoh soal soal matematika kelas 12 ips integral dan pembahasannya, riset, contoh, soal, soal, matematika, kelas, 12, ips, integral, dan, pembahasannya LIST OF CONTENT Opening Something Relevant Conclusion Recommended Posts of Contoh Soal Soal Matematika Kelas 12 Ips Integral Dan Pembahasannya Conclusion From Contoh Soal Soal Matematika Kelas 12 Ips Integral Dan Pembahasannya Contoh Soal Soal Matematika Kelas 12 Ips Integral Dan Pembahasannya - A collection of text Contoh Soal Soal Matematika Kelas 12 Ips Integral Dan Pembahasannya from the internet giant network on planet earth, can be seen here. We hope you find what you are looking for. Hopefully can help. Thanks. See the Next Post

materi matematika integral kelas 12 ips